## Appendix B

# Transportation Supporting Data and Calculations

## Land Use: 130 Industrial Park

#### Description

An industrial park contains several individual industrial or related facilities. It is characterized by a mix of manufacturing, service, and warehouse facilities with a wide variation in the proportion of each type of use from one location to another. Many industrial parks contain highly diversified facilities. Some parks in the database have a large number of small businesses and others have one or two dominant industries. General light industrial (Land Use 110) and manufacturing (Land Use 140) are related uses.

#### **Additional Data**

The sites were surveyed in the 1980s, the 2000s, 2010s, and the 2020s in California, Georgia, New Jersey, Massachusetts, New York, Ontario (CAN), and Pennsylvania.

#### Source Numbers

106, 162, 184, 251, 277, 422, 706, 747, 753, 937, 1032, 1070



## Industrial Park (130)

#### Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday

#### Setting/Location: General Urban/Suburban

Number of Studies: 27

Avg. 1000 Sq. Ft. GFA: 762

Directional Distribution: 50% entering, 50% exiting

#### Vehicle Trip Generation per 1000 Sq. Ft. GFA

| Average Rate | Range of Rates | Standard Deviation |
|--------------|----------------|--------------------|
| 3.37         | 1.41 - 14.98   | 2.60               |

#### **Data Plot and Equation**





## Industrial Park (130)

#### Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,

Peak Hour of Adjacent Street Traffic,

One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 34

Avg. 1000 Sq. Ft. GFA: 956

Directional Distribution: 81% entering, 19% exiting

#### Vehicle Trip Generation per 1000 Sq. Ft. GFA

| Average Rate | Range of Rates | Standard Deviation |
|--------------|----------------|--------------------|
| 0.34         | 0.06 - 2.13    | 0.33               |

#### **Data Plot and Equation**





## Industrial Park (130)

#### Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,

Peak Hour of Adjacent Street Traffic,

One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 35

Avg. 1000 Sq. Ft. GFA: 899

Directional Distribution: 22% entering, 78% exiting

#### Vehicle Trip Generation per 1000 Sq. Ft. GFA

| Average Rate | Range of Rates | Standard Deviation |
|--------------|----------------|--------------------|
| 0.34         | 0.09 - 2.85    | 0.36               |

#### Data Plot and Equation





| SOURCE: ITE TRIP GENERATION MAN | UAL 11th EC | DITION (202 | 1)      |      |
|---------------------------------|-------------|-------------|---------|------|
| Industrial Park (LU 130)        |             |             |         |      |
| DAILY                           | 147 KSF     | 197 KSF     | 435 KSF | AVGs |
| TRUCK RATES PER KSF             | 0.35        | 0.83        | 0.53    |      |
| TOTAL RATES PER KSF             | 3.67        | 5.44        | 3.32    | 4.14 |
| Percent Trucks                  | 10%         | 15%         | 16%     | 14%  |
| AM Peak hour                    | 147 KSF     | 197 KSF     | 435 KSF |      |
| TRUCK RATES PER KSF             | 0.03        | 0.06        | 0.03    |      |
| TOTAL RATES PER KSF             | 0.27        | 0.54        | 0.24    | 0.35 |
| Percent Trucks                  | 11%         | 11%         | 13%     | 12%  |
| PM Peak hour                    | 147 KSF     | 197 KSF     | 435 KSF |      |
| TRUCK RATES PER KSF             | 0.01        | 0.07        | 0.04    |      |
| TOTAL RATES PER KSF             | 0.27        | 0.57        | 0.43    | 0.42 |
| Percent Trucks                  | 4%          | 12%         | 9%      | 8%   |

|                      |               |          |           | Service    | Total Orig Vol | Total Dest | Total OD  | Total Orig | Total Dest |              | Total OD VMT per   |
|----------------------|---------------|----------|-----------|------------|----------------|------------|-----------|------------|------------|--------------|--------------------|
| Base Year Conditions | Housing Units | Resident | Employees | Population | From           | Vol To     | Vol       | VMT From   | VMT To     | Total OD VMT | Service Population |
| City of Roseville    | 55,992        | 140,629  | 80,350    | 220,979    | 594,476        | 594,476    | 1,188,952 | 3,581,152  | 3,591,458  | 7,172,610    | 32.5               |

#### Project VMT Under Base Year

| TAZ  |  |
|------|--|
| 1502 |  |

VMT\_FROM VMT\_TO 78951 79416.77 Total VMT 158367.77

|                            |               |          |           | Service    | Total Orig Vol | Total Dest | Total OD  | Total Orig | Total Dest |              | Total OD VMT per   |
|----------------------------|---------------|----------|-----------|------------|----------------|------------|-----------|------------|------------|--------------|--------------------|
| Cumulative 2035 No Project | Housing Units | Resident | Employees | Population | From           | Vol To     | Vol       | VMT From   | VMT To     | Total OD VMT | Service Population |
| City of Roseville          | 75,686        | 190,491  | 123,405   | 313,896    | 864,540        | 864,540    | 1,729,081 | 5,513,404  | 5,517,359  | 11,030,763   | 35.1               |

#### Project VMT Under Cumulative Year

| TAZ  | VMT_FROM | VMT_TO |
|------|----------|--------|
| 1502 | 8371.3   | 8371.3 |

Total VMT 126922.04

### List of Resources Used to Develop Transportation Demand Management (TDM) Strategy Effectiveness

Transportation Research Board (TRB). 2010. Traveler Response to Transportation System Changes Handbook, Third Edition: Chapter 19, Employer and Institutional TDM Strategies. June. Available: http://www.trb.org/Publications/Blurbs/163781.aspx. Accessed: January 2021.

San Diego Association of Governments (SANDAG). 2019. Mobility Management VMT Reduction Calculator Tool–Design Document. June. Available:

https://www.icommutesd.com/docs/defaultsource/planning/tool-design-document\_final\_7-17-19.pdf?sfvrsn=ec39eb3b\_2. Accessed: January 2021.

Buehler, R. 2012. Determinants of bicycle commuting in the Washington, DC region: The role bicycle parking, cyclist showers, and free car parking at work. Transportation Research Part D, 17, 525–531. Available:

http://www.pedbikeinfo.org/cms/downloads/DeterminantsofBicycleCommuting.pdf. Accessed: January 2021.

Federal Highway Administration (FHWA). 2017a. National Household Travel Survey – 2017 Table Designer. Travel Day PT by TRPTRANS by HH\_CBSA. Available: https://nhts.ornl.gov/. Accessed: January 2021.

Federal Highway Administration (FHWA). 2017b. National Household Travel Survey – 2017 Table Designer. Workers by WRKTRANS by HH\_CBSA. Available: https://nhts.ornl.gov/. Accessed: January 2021.

California Air Resources Board (CARB). 2020. EMFAC2017 v1.0.3. August. Available: https://arb.ca.gov/emfac/emissions-inventory. Accessed: January 2021.

Federal Highway Administration (FHWA). 2017. National Household Travel Survey–2017 Table Designer. Travel Day VT by HH\_CBSA by TRPTRANS by TRIPPURP. Available: https://nhts.ornl.gov/. Accessed: January 2021.

(Intergovernmental Panel on Climate Change (IPCC). 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 pp. Available:

https://www.ipcc.ch/report/ar4/wg1/. Accessed: January 2021. (4) San Diego Association of Governments (SANDAG). 2019. Mobility Management VMT Reduction Calculator Tool–Design Document. June. Available: https://www.icommutesd.com/docs/default-

source/planning/tooldesign-document\_final\_7-17-19.pdf?sfvrsn=ec39eb3b\_2. Accessed: January 2021.

Shoup, D. 2005. Parking Cash Out. Planners Advisory Service, American Planning Association. Available: http://shoup.bol.ucla.edu/ParkingCashOut.pdf. Accessed: January 2021. Federal Highway Administration (FHWA). 2019. 2017 National Household Travel Survey Popular Vehicle Trip Statistics. Available: https://nhts.ornl.gov/vehicle-trips. Accessed: January 2021.

Frank, L., M. Greenwald, S. Kavage, and A. Devlin. 2011. An Assessment of Urban Form and Pedestrian and Transit Improvements as an Integrated GHG Reduction Strategy. WSDOT Research Report WA-RD 765.1, Washington State Department of Transportation. April. Available: www.wsdot.wa.gov/research/reports/fullreports/765.1.pdf. Accessed: January 2021.

Handy, S., S. Glan-Claudia, and M. Boarnet. 2014. Impacts of Pedestrian Strategies on Passenger Vehicle Use and Greenhouse Gas Emissions: Policy Brief. September. Available: https://ww2.arb.ca.gov/sites/default/files/2020-

06/Impacts\_of\_Pedestrian\_Strategies\_on\_Passenger\_Vehicle\_Use\_and\_Greenhouse\_Gas\_Emission s\_P olicy\_Brief.pdf. Accessed: January 2021.

California Air Resources Board (CARB). 2020. Quantification Methodology for the Strategic Growth Council's Affordable Housing and Sustainable Communities Program. September. Available:

https://ww2.arb.ca.gov/sites/default/files/classic/cc/capandtrade/auctionproceeds/draft\_sgc\_ahs c\_q m\_091620.pdf. Accessed: January 2021.

Federal Highway Administration (FHWA). 2017. National Household Travel Survey–2017 Table Designer. Travel Day PT by TRPTRANS by HH\_CBSA. Available: https://nhts.ornl.gov/. Accessed: January 2021.

National Oceanic and Atmospheric Administration (NOAA). 2021. Global Historical Climatology Network–Daily (GHCN-Daily), Version 3. 2015-2019 Average of Days Per Year with Precipitation >0.1 Inches. Available: https://www.ncei.noaa.gov/access/search/datasearch/dailysummaries?bbox=38.922,-120.071,38.338,-119.547&place=County:1276&dataTypes=PRCP&startDate=2015-01-01T00:00:00&endDate=2019-01-01T23:59:59. Accessed: May 2021.